Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.263
Filter
1.
BMC Infect Dis ; 24(1): 376, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38575877

ABSTRACT

There is considerable interest in the use of doxycycline post exposure prophylaxis (PEP) to reduce the incidence of bacterial sexually transmitted infections (STIs). An important concern is that this could select for tetracycline resistance in these STIs and other species. We searched PubMed and Google Scholar, (1948-2023) for randomized controlled trials comparing tetracycline PEP with non-tetracycline controls. The primary outcome was antimicrobial resistance (AMR) to tetracyclines in all bacterial species with available data. Our search yielded 140 studies, of which three met the inclusion criteria. Tetracycline PEP was associated with an increasedprevalence of tetracycline resistance in Neisseria gonorrhoeae, but this effect was not statistically significant (Pooled OR 2.3, 95% CI 0.9-3.4). PEP had a marked effect on the N. gonorrhoeae tetracycline MIC distribution in the one study where this was assessed. Prophylactic efficacy was 100% at low MICs and 0% at high MICs. In the one study where this was assessed, PEP resulted in a significant increase in tetracycline resistance in commensal Neisseria species compared to the control group (OR 2.9, 95% CI 1.5-5.5) but no significant effect on the prevalence of tetracycline resistance in Staphylococcus aureus. The available evidence suggests that PEP with tetracyclines could be associated with selecting tetracycline resistance in N. gonorrhoeae and commensal Neisseria species.


Subject(s)
Gonorrhea , Sexually Transmitted Diseases , Humans , Tetracycline/pharmacology , Tetracycline/therapeutic use , Tetracycline Resistance , Post-Exposure Prophylaxis , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Neisseria gonorrhoeae , Microbial Sensitivity Tests , Tetracyclines/pharmacology , Tetracyclines/therapeutic use , Mitomycin/therapeutic use , Gonorrhea/drug therapy , Gonorrhea/epidemiology , Gonorrhea/prevention & control
2.
Environ Pollut ; 349: 123943, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38599271

ABSTRACT

Aeromonas hydrophila has ability to spread tetracycline resistance (tetR) under stresses of oxytetracycline (OTC), one of the most important antibiotics in aquaculture industry. Even though environmental reservoir of Aeromonas allows it to be at interfaces across One Health components, a robust modelling framework for rigorously assessing health risks is currently lacking. We proposed a One Health-based approach and leveraged recent advances in quantitative microbial risk assessment appraised by available dataset to interpret interactions at the human-animal-environment interfaces in various exposure scenarios. The dose-response models were constructed considering the effects on mortality for aquaculture species and tetR genes transfer for humans. A scenario-specific risk assessment on pond species-associated A. hydrophila infection and human gut-associated tetR genes transfer was examined. Risk-based control strategies were involved to test their effectiveness. We showed that farmed shrimp exposed to tetracycline-resistant A. hydrophila in OTC-contaminated water experienced higher infection risk (relative risk: 1.25-1.34). The tetR genes transfer risk for farmers in shrimp ponds (∼2 × 10-4) and swimmers in coastal areas (∼4 × 10-6) during autumn exceeded acceptable risk (10-6). This cautionary finding underscores the importance of accounting for monitoring, assessing, and mitigating occupational health hazards among workers in shrimp farming sectors within future One Health-based strategies for managing water infection risks. We recommend that OTC emission rate together with A. hydrophila concentration should be reduced by up to 70-99% to protect human, farmed shrimp, and environmental health. Our predictive framework can be adopted for other systems and be used as a "risk detector" for assessing tetR-related health risks that invoke potential risk management on addressing sustainable mitigation on offsetting residual OTC emission and tetR genes spread in a species-human-environmental health system.


Subject(s)
Aeromonas hydrophila , Aquaculture , One Health , Tetracycline Resistance , Aeromonas hydrophila/drug effects , Humans , Animals , Tetracycline Resistance/genetics , Anti-Bacterial Agents/pharmacology , Risk Assessment , Oxytetracycline/pharmacology , Gram-Negative Bacterial Infections
3.
J Antimicrob Chemother ; 79(5): 1023-1029, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38497972

ABSTRACT

BACKGROUND: Corynebacterium (C.) sp. 22KM0430 related to C. oculi and isolated from a dog exhibited resistance to tetracycline, and its WGS analysis revealed a putative resistance gene on a 35 562-bp plasmid also harbouring the MLSB resistance gene erm(X). OBJECTIVES: To characterize the novel tetracycline resistance gene tet(65) and demonstrate its functionality by expression in C. glutamicum and Escherichia coli and plasmid curing of the host strain. METHODS: tet(65) was cloned with and without its repressor tetR(65) and expressed in C. glutamicum DSM20300 and E. coli DH5α. Plasmid was cured by non-selective passages. Minimal inhibitory concentrations (MICs) of tetracyclines were determined according to CLSI guidelines. Association of tet(65) with efflux was shown by the addition of reserpine to MIC assays. Phylogenetic position and transmembrane structure of Tet(65) were analysed using MEGA11 and DeepTMHMM. RESULTS: Tet(65) shows 73% amino acid identity with the closest related Tet(Z), contains 12 transmembrane domains and is structurally related to the Major Facilitator Superfamily. The tetracycline MICs decreased in the plasmid-cured strain and increased when tet(65) was expressed in C. glutamicum and in E. coli. The MICs of tetracycline decreased in the presence of reserpine indicating that tet(65) functions as an efflux pump. A GenBank search also identified tet(65) in C. diphtheriae and Brevibacterium (B.) casei and B. luteolum. CONCLUSIONS: A novel tetracycline efflux gene tet(65) was identified in a C. oculi related species and was also present in the human pathogen C. diphtheriae and in Brevibacterium species indicating broader potential for dissemination.


Subject(s)
Anti-Bacterial Agents , Corynebacterium , Escherichia coli , Microbial Sensitivity Tests , Plasmids , Tetracycline Resistance , Plasmids/genetics , Tetracycline Resistance/genetics , Anti-Bacterial Agents/pharmacology , Escherichia coli/genetics , Escherichia coli/drug effects , Corynebacterium/genetics , Corynebacterium/drug effects , Animals , Drug Resistance, Multiple, Bacterial/genetics , Phylogeny , Dogs , Tetracycline/pharmacology , Cloning, Molecular , Corynebacterium Infections/microbiology , Dog Diseases/microbiology
4.
Food Microbiol ; 120: 104481, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38431327

ABSTRACT

In this study, the tetracycline resistance of Enterococcus faecalis strains isolated from food was determined and molecular analyses of the resistance background were performed by determining the frequency of selected tetracycline resistance genes. In addition, the effect of high-pressure stress (400 and 500 MPa) on the expression of selected genes encoding tetracycline resistance was determined, as well as changes in the frequency of transfer of these genes in isolates showing sensitivity to tetracyclines. In our study, we observed an increase in the expression of genes encoding tetracyclines, especially the tet(L) gene, mainly under 400 MPa pressure. The study confirmed the possibility of transferring genes encoding tetracyclines such as tet(M), tet(L), tet(K), tet(W) and tet(O) by horizontal gene transfer in both control strains and exposed to high-pressure. Exposure of the strains to 400 MPa pressure had a greater effect on the possibility of gene transfer and expression than the application of a higher-pressure. To our knowledge, this study for the first time determined the effect of high-pressure stress on the expression of selected genes encoding tetracycline resistance, as well as the possibility and changes in the frequency of transfer of these genes in Enterococcus faecalis isolates showing sensitivity to tetracyclines and possessing silent genes. Due to the observed possibility of increased expression of some of the genes encoding tetracycline resistance and the possibility of their spread by horizontal gene transfer to other microorganisms in the food environment, under the influence of high-pressure processing in strains phenotypically susceptible to this antibiotic, it becomes necessary to monitor this ability in isolates derived from foods.


Subject(s)
Enterococcus faecalis , Tetracycline Resistance , Enterococcus faecalis/genetics , Tetracycline Resistance/genetics , Anti-Bacterial Agents/pharmacology , Tetracycline/pharmacology , Tetracyclines/pharmacology , Microbial Sensitivity Tests
5.
J Antimicrob Chemother ; 79(5): 1060-1068, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38517444

ABSTRACT

BACKGROUND: Antimicrobial resistance in Neisseria gonorrhoeae is a global public health concern. Tetracycline resistance (TetR) increased from 39.4% to 75.2% between 2016 and 2021 in N. gonorrhoeae isolates collected through national surveillance in England, despite the absence of use of tetracyclines for the treatment of gonorrhoea. OBJECTIVES: We investigated whether there was correlation between bacterial sexually transmitted infection (STI) tests performed and treatment with antimicrobials, with increased TetR in N. gonorrhoeae. METHODS: We examined correlations between bacterial STI tests, antimicrobial treatment and TetR in N. gonorrhoeae, using national surveillance data from three large sexual health services (SHS) in London during 2016-20. Doxycycline prescribing data and antibiograms of a non-STI pathogen from distinct patient groups (sexual health, obstetric and paediatric), at a large London hospital, were analysed to identify if doxycycline use in SHS was associated with resistance in a non-STI organism. RESULTS: A substantial increase in TetR was observed, particularly in isolates from gay, bisexual and other MSM (GBMSM). Strong positive correlations were observed exclusively in GBMSM between N. gonorrhoeae TetR and both bacterial STI tests (r = 0.97, P = 0.01) and antimicrobial treatment (r = 0.87, P = 0.05). Doxycycline prescribing increased dramatically during the study period in SHS. Prevalence of TetR in Staphylococcus aureus was higher in isolates sourced from SHS attendees than those from other settings. CONCLUSIONS: Frequent screening of GBMSM at higher risk of STIs, such as those on pre-exposure prophylaxis (PrEP) leading to/and increased use of doxycycline for the treatment of diagnosed infections, may account for the increase in TetR in N. gonorrhoeae.


Subject(s)
Anti-Bacterial Agents , Doxycycline , Gonorrhea , Microbial Sensitivity Tests , Neisseria gonorrhoeae , Tetracycline Resistance , Neisseria gonorrhoeae/drug effects , Neisseria gonorrhoeae/isolation & purification , Humans , Gonorrhea/microbiology , Gonorrhea/epidemiology , Gonorrhea/drug therapy , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , England/epidemiology , Male , Female , Doxycycline/therapeutic use , Doxycycline/pharmacology , Adult , London/epidemiology , Tetracycline/pharmacology , Tetracycline/therapeutic use
6.
Vet Microbiol ; 290: 109995, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38301451

ABSTRACT

Gallibacterium anatis is a Gram-negative bacterium found in the respiratory and genital tracts of various animals, primarily poultry. Its association with septicemia and high mortality in poultry, along with the rise in multidrug-resistant strains, has amplified concerns. Recent research uncovered significant variability in antibiotic resistance profiles among G. anatis isolates from different Austrian flocks, and even between different organs within the same bird. In response, in the present study 60 of these isolates were sequenced and a combination of comparative genomics and genome-wide association study (GWAS) analysis was applied to understand the genetic variability of G. anatis across flocks and organs and to identify genes related to antibiotic resistance. The results showed that each flock harbored one or two strains of G. anatis with only a few strains shared between flocks, demonstrating a great variability among flocks. We identified genes associated with resistance to nalidixic acid, trimethoprim, cefoxitin, tetracycline, ampicillin and sulfamethoxazole. Our findings revealed that G. anatis may develop antibiotic resistance through two mechanisms: single-nucleotide mutations and the presence of specific genes that confer resistance. Unexpectedly, some tetracycline-resistant isolates lacked all known tetracycline-associated genes, suggesting the involvement of novel mechanisms of tetracycline resistance that require additional exploration. Furthermore, our functional annotation of resistance genes highlighted the citric acid cycle pathway as a potential key modulator of antibiotic resistance in G. anatis. In summary, this study describes the first application of GWAS analysis to G. anatis and provides new insights into the acquisition of multidrug resistance in this important avian pathogen.


Subject(s)
Pasteurellaceae , Poultry Diseases , Animals , Anti-Bacterial Agents/pharmacology , Genome-Wide Association Study/veterinary , Chickens/microbiology , Tetracycline , Poultry/genetics , Tetracycline Resistance/genetics , Genomics , Poultry Diseases/microbiology
7.
Ecotoxicol Environ Saf ; 271: 115918, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38232521

ABSTRACT

Tetracycline antibiotics play a vital role in animal husbandry, primarily employed to uphold the health of livestock and poultry. Consequently, when manure is reintegrated into farmland, tetracycline antibiotics can persist in the soil. Simultaneously, to ensure optimal crop production, organochlorine pesticides (OCPs) are frequently applied to farmland. The coexistence of tetracycline antibiotics and OCPs in soil may lead to an increased risk of transmission of tetracycline resistance genes (TRGs). Nevertheless, the precise mechanism underlying the effects of OCPs on tetracycline antibiotics and TRGs remains elusive. In this study, we aimed to investigate the effects of OCPs on soil tetracycline antibiotics and TRGs using different concentrations of doxycycline (DOX) and pentachlorophenol (PCP). The findings indicate that PCP and DOX mutually impede their degradation in soil. Furthermore, our investigation identifies Sphingomonas and Bacillus as potential pivotal microorganisms influencing the reciprocal inhibition of PCP and DOX. Additionally, it is observed that the concurrent presence of PCP and DOX could impede each other's degradation by elevating soil conductivity. Furthermore, we observed that a high concentration of PCP (10.7 mg/kg) reduced the content of efflux pump tetA, ribosome protective protein tetM, tetQ, and passivating enzyme tetX. In contrast, a low PCP concentration (6.4 mg/kg) only reduced the content of ribosome protective protein tetQ. This suggests that PCP may reduce the relative abundance of TRGs by altering the soil microbial community structure and inhibiting the potential host bacteria of TRGs. These findings have significant implications in understanding the combined pollution of veterinary antibiotics and OCPs. By shedding light on the interactions between these compounds and their impact on microbial communities, this study provides a theoretical basis for developing strategies to manage and mitigate their environmental impact, and may give some information regarding the sustainable use of antibiotics and pesticides to ensure the long-term health and productivity of agricultural systems.


Subject(s)
Pentachlorophenol , Pesticides , Animals , Doxycycline/pharmacology , Pentachlorophenol/toxicity , Soil/chemistry , Tetracycline Resistance/genetics , Soil Microbiology , Anti-Bacterial Agents/pharmacology , Tetracycline/pharmacology , Genes, Bacterial , Pesticides/pharmacology , Animal Husbandry
8.
Microb Drug Resist ; 30(4): 164-167, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38060816

ABSTRACT

Resistance in Helicobacter pylori to tetracycline is rare. We describe the case of an H. pylori strain with a high level of resistance to tetracycline (minimum inhibitory concentration = 12 mg/L). However, despite tetracycline resistance, bismuth quadritherapy was effective. Analysis of the patient's antibiotic treatment history over the previous 25 years revealed repeated 3-month courses of tetracycline for the treatment of acne, suggesting in vivo selection pressure responsible for the emergence of the triple mutation (AGA→TTC) in 16S rDNA associated with tetracycline resistance. This is a rare event but one worth monitoring, especially in view of the widespread use of bismuth quadritherapy for probabilistic treatment in countries where it is available.


Subject(s)
Anti-Bacterial Agents , Helicobacter Infections , Helicobacter pylori , Humans , Anti-Bacterial Agents/pharmacology , Helicobacter Infections/drug therapy , Helicobacter pylori/genetics , Bismuth/pharmacology , Bismuth/therapeutic use , Microbial Sensitivity Tests , Tetracycline/pharmacology , Tetracycline/therapeutic use , Tetracycline Resistance/genetics , Drug Therapy, Combination , Metronidazole/pharmacology
9.
Microb Biotechnol ; 17(1): e14379, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38085112

ABSTRACT

Tetracycline is a commonly used human and veterinary antibiotic that is mostly discharged into environment and thereby tetracycline-resistant bacteria are widely isolated. To combat these resistant bacteria, further understanding for tetracycline resistance mechanisms is needed. Here, GC-MS based untargeted metabolomics with biochemistry and molecular biology techniques was used to explore tetracycline resistance mechanisms of Edwardsiella tarda. Tetracycline-resistant E. tarda (LTB4-RTET ) exhibited a globally repressed metabolism against elevated proton motive force (PMF) as the most characteristic feature. The elevated PMF contributed to the resistance, which was supported by the three results: (i) viability was decreased with increasing PMF inhibitor carbonylcyanide-3-chlorophenylhydrazone; (ii) survival is related to PMF regulated by pH; (iii) LTB4-RTET were sensitive to gentamicin, an antibiotic that is dependent upon PMF to kill bacteria. Meanwhile, gentamicin-resistant E. tarda with low PMF are sensitive to tetracycline is also demonstrated. These results together indicate that the combination of tetracycline with gentamycin will effectively kill both gentamycin and tetracycline resistant bacteria. Therefore, the present study reveals a PMF-enhanced tetracycline resistance mechanism in LTB4-RTET and provides an effective approach to combat resistant bacteria.


Subject(s)
Edwardsiella tarda , Tetracycline Resistance , Humans , Edwardsiella tarda/metabolism , Gentamicins/pharmacology , Gentamicins/metabolism , Proton-Motive Force , Leukotriene B4/metabolism , Leukotriene B4/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Tetracycline/pharmacology , Tetracycline/metabolism , Bacteria/metabolism
10.
Appl Environ Microbiol ; 89(11): e0120523, 2023 11 29.
Article in English | MEDLINE | ID: mdl-37888979

ABSTRACT

IMPORTANCE: Listeria monocytogenes causes severe foodborne illness and is the only human pathogen in the genus Listeria. Previous surveys of AMR in Listeria focused on clinical sources and food or food processing environments, with AMR in strains from wildlife and other natural ecosystems remaining under-explored. We analyzed 185 sequenced strains from wild black bears (Ursus americanus) from the United States, including 158 and 27 L. monocytogenes and L. innocua, respectively. Tetracycline resistance was the most prevalent resistance trait. In L. monocytogenes, it was encountered exclusively in serotype 4b strains with the novel Tn916-like element Tn916.1039. In contrast, three distinct, novel tetracycline resistance elements (Tn5801.UAM, Tn5801.551, and Tn6000.205) were identified in L. innocua. Interestingly, Tn5801.551 was identical to elements in L. monocytogenes from a major foodborne outbreak in the United States in 2011. The findings suggest the importance of wildlife and non-pathogenic Listeria species as reservoir for resistance elements in Listeria.


Subject(s)
Listeria monocytogenes , Listeria , Ursidae , Animals , Humans , United States , Listeria monocytogenes/genetics , DNA Transposable Elements , Tetracycline Resistance/genetics , Animals, Wild , Ecosystem , Listeria/genetics , Food Microbiology
11.
Sci Total Environ ; 902: 166026, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37541513

ABSTRACT

Understanding tetracycline resistance in Vibrio parahaemolyticus from food products is crucial for effective control measures against this foodborne pathogen. This study aimed to investigate the prevalence, evolution routes, and mechanism of transmission of tetracycline resistance in Vibrio parahaemolyticus isolates collected from food products in Shenzhen, China. A total of 2342 non-duplicate Vibrio parahaemolyticus were isolated from 3509 food samples during the period 2013-2021. Among these 2342 Vibrio parahaemolyticus strains, 530 (21.37 %) were resistant to tetracycline. These tetracycline-resistant Vibrio parahaemolyticus strains were mainly isolated from shrimp samples, with the highest resistance rate (46.9 %) observed in 2019. Phylogenetic and genomic analyses of 387 isolates carrying the tet genes revealed that five different types of tet genes (tet(34), tet(A), tet(B), tet(M), and tet(E)) were present. The tet(A) gene was the most common (65 % of isolates), while tet(E) and tet(M) genes were only detected in specific years. Although tet(A) is the most commonly detected gene, it only encodes resistance in a low percentage of strains (47/129). On the other hand, the resistance rate is highest in isolates carrying tet(B) (41/55). Interestingly, V. parahaemolyticus carrying the tet genes were not necessarily tetracycline-resistant, and vice versa. A total of six different types of plasmids and two transposable units were found to carry the tet genes. V. parahaemolyticus strains that harbored these plasmids were often resistant to multiple antibiotics, indicating that horizontal transfer of antibiotic resistance genes is common among V. parahaemolyticus strains. Our findings suggest a high prevalence of tetracycline resistance in Vibrio parahaemolyticus strains recovered from food products in Shenzhen, China. These results provide valuable insight into the evolution and transmission of tetracycline resistance in foodborne Vibrio parahaemolyticus isolates and highlight the need for effective control measures to prevent the spread of antibiotic resistance.


Subject(s)
Tetracycline Resistance , Vibrio parahaemolyticus , Tetracycline Resistance/genetics , Prevalence , Phylogeny , Anti-Bacterial Agents/pharmacology , Tetracycline/pharmacology , Vibrio parahaemolyticus/genetics , China/epidemiology
12.
Braz J Microbiol ; 54(3): 2375-2382, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37418110

ABSTRACT

Recently, an increasing number of multi drug resistant Salmonella species have been emerged due to overuse of antibiotics in veterinary and human medicine which has adverse consequences on public health. The present study was conducted with the aim of investigating the prevalence of Salmonella infection in village chickens in Sistan region and determining the prevalence of the antibiotic resistance genes in Salmonella isolated from these birds. In this study, 100 chickens were randomly selected from five counties of Sistan region. A cloacal swab sample was taken from each bird and also information about age, gender, breed, proximity with other birds, proximity with waterfowl, proximity with livestock, and receiving different antibiotics especially tetracycline were obtained using a questionnaire. Conventional culture methods used for Salmonella detection and isolation. Then, amplification of invA gene by PCR was used to confirm Salmonella colonies. Finally, 27 samples were confirmed to be infected with Salmonella by both culture and PCR methods. Disk diffusion method was used to determine the sensitivity to 4 antibiotics including; tetracycline, gentamicin, cefepime, and difloxacin. The results of the present study showed that proximity to waterfowl (OR = 0.273) significantly mitigates the risk of Salmonella infection. For the isolates, the highest resistance was recorded against cefepime and the highest susceptibility was to difloxacin. The presence proportion of tetA and tetB in tetracycline resistant isolates was higher than that in susceptible ones but this difference was not statistically significant.


Subject(s)
Chickens , Salmonella Infections , Animals , Anti-Bacterial Agents/pharmacology , Cefepime , Chickens/microbiology , Drug Resistance, Multiple, Bacterial/genetics , Iran/epidemiology , Microbial Sensitivity Tests , Prevalence , Salmonella/genetics , Tetracycline Resistance , Tetracyclines
13.
Environ Sci Pollut Res Int ; 30(39): 90844-90857, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37464207

ABSTRACT

The mechanism of antibiotic resistance (AR) development in an activated sludge system under tetracycline (TC) pressure was discussed and analyzed. According to the variation of macro-factors, including TC, COD, TN, TP, NH3-N, pH, heavy metals, and reactor settings, the tet genes respond accordingly. Consequently, the enrichment sites of tet genes form an invisible AR selection zone, where AR microorganisms thrive, gather, reproduce, and spread. The efflux pump genes tetA and tetB prefer anaerobic environment, while ribosome protective protein genes tetM, tetO, tetQ, tetT, and tetW were more concentrated in aerobic situations. As a corresponding micro-effect, different types of tet genes selected the corresponding dominant bacteria such as Thauera and Arthrobacter, suggesting the intrinsic relationship between tet genes and potential hosts. In summary, the macro-response and micro-effect of tet genes constitute an interactive mechanism with tet genes as the core, which is the crucial cause for the continuous development of AR. This study provides an executable strategy to control the development of AR in actual wastewater treatment plants from the perspective of macro-factors and micro-effects.


Subject(s)
Genes, Bacterial , Sewage , Sewage/microbiology , Anti-Bacterial Agents/pharmacology , Tetracycline/pharmacology , Drug Resistance, Microbial/genetics , Tetracycline Resistance/genetics
14.
J Antimicrob Chemother ; 78(8): 1871-1881, 2023 08 02.
Article in English | MEDLINE | ID: mdl-37287125

ABSTRACT

BACKGROUND: The overuse of antibiotics in livestock is contributing to the burden of antimicrobial resistance in humans, representing a One Health challenge. Livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) has recently become a growing concern, and ST9 is the major LA-MRSA lineage in China and has emerged in clinical settings. METHODS: Antimicrobial susceptibility testing was used to evaluate the tetracycline resistance of ST9 MRSA collections, and gene cloning experiments were performed to explore the resistance mechanisms. Whole-genome sequencing and comparative genomics were used to analyse the genetic features of clinical ST9 isolates. A phylogenetic tree was constructed to investigate the relationship of human- and livestock-derived ST9 isolates. RESULTS: Clinical ST9 isolates were found to possess several types of resistance genes and resistance-related mutations and were multidrug-resistant. Notably, all clinical ST9 isolates were resistant to third-generation tetracyclines. Cloning experiments showed that both the acquisition of the tetracycline resistance gene tet(L)/tet(63) and a mutation in the rpsJ gene contributed to third-generation tetracycline resistance. Phylogenetic analysis showed that the ST9 isolates collected in healthcare systems were probably transmitted from livestock. The ST9 lineage underwent multiple interspecies recombination events and gained many resistance elements. Furthermore, the resistance to third-generation tetracyclines may have evolved under tetracycline pressure in livestock. CONCLUSIONS: The evolution of ST9 MRSA in livestock and transmission of this clone between humans and livestock highlight the importance of establishing control strategies with the One Health approach to reduce the burden of antibiotic resistance.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Animals , Humans , Livestock , Tetracycline Resistance/genetics , Phylogeny , Staphylococcal Infections/epidemiology , Staphylococcal Infections/veterinary , Anti-Bacterial Agents/pharmacology , Tetracycline , China/epidemiology
15.
Ecotoxicol Environ Saf ; 259: 115025, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37216861

ABSTRACT

In this paper, water and sediments were sampled at eight monitoring stations in the coastal areas of the Yangtze River Estuary in summer and autumn 2021. Two sulfonamide resistance genes (sul1 and sul2), six tetracycline resistance genes (tetM, tetC, tetX, tetA, tetO, and tetQ), one integrase gene (intI1), 16 S rRNA genes, and microbial communities were examined and analyzed. Most resistance genes showed relatively higher abundance in summer and lower abundance in autumn. One-way analysis of variance (ANOVA) showed significant seasonal variation of some ARGs (7 ARGs in water and 6 ARGs in sediment). River runoff and WWTPs are proven to be the major sources of resistance genes along the Yangtze River Estuary. Significant and positive correlations between intI1 and other ARGs were found in water samples (P < 0.05), implying that intI1 may influence the spread and propagation of resistance genes in aquatic environments. Proteobacteria was the dominant phylum along the Yangtze River Estuary, with an average proportion of 41.7%. Redundancy analysis indicated that the ARGs were greatly affected by temperature, dissolved oxygen, and pH in estuarine environments. Network analysis showed that Proteobacteria and Cyanobacteria were the potential host phyla for ARGs in the coastal areas of the Yangtze River Estuary.


Subject(s)
Estuaries , Microbiota , Tetracycline Resistance/genetics , Rivers/microbiology , Genes, Bacterial , Drug Resistance, Microbial/genetics , Anti-Bacterial Agents/analysis , Tetracycline/analysis , Sulfanilamide , Sulfonamides/analysis , Water/analysis , Microbiota/genetics , China , Environmental Monitoring
16.
J Appl Microbiol ; 134(4)2023 Apr 03.
Article in English | MEDLINE | ID: mdl-36958862

ABSTRACT

AIMS: This study investigated the tetracycline resistance potential of heterotrophic bacteria isolated from twenty-four freshwater fin-fish culture ponds in Andhra Pradesh, India. METHODS AND RESULTS: A total of 261 tetracycline resistant bacteria (tetR) were recovered from pond water, pond sediment, fish gills, fish intestine, and fish feed. Bacteria with high tetracycline resistance (tetHR) (n = 30) that were resistant to tetracycline concentrations above 128  µg mL-1 were predominantly Lactococcus garvieae followed by Enterobacter spp., Lactococcus lactis, Enterobacter hormaechei, Staphylococcus arlettae, Streptococcus lutetiensis, Staphylococcus spp., Brevundimonas faecalis, Exiguobacterium profundum, Lysinibacillus spp., Stutzerimonas stutzeri, Enterobacter cloacae, and Lactococcus taiwanensis. Resistance to 1024 µg mL-1 of tetracycline was observed in L. garvieae, S. arlettae, Enterobacter spp., B. faecalis. Tet(A) (67%) was the predominant resistance gene in tetHR followed by tet(L), tet(S), tet(K), and tet(M). At similar concentrations of exposure, tetracycline procured at the farm level (69.5% potency) exhibited lower inhibition against tetHR bacteria compared to pure tetracycline (99% potency). The tetHR bacteria showed higher cross-resistance to furazolidone (100%) followed by co-trimoxazole (47.5%) and enrofloxacin (11%). CONCLUSIONS: The maximum threshold of tetracycline resistance at 1024 µg mL-1 was observed in S. arlettae, Enterobacter spp., B. faecalis, and L. garvieae and tet(A) was the major determinant found in this study.


Subject(s)
Anti-Bacterial Agents , Tetracycline Resistance , Animals , Tetracycline Resistance/genetics , Anti-Bacterial Agents/pharmacology , Bacteria , Tetracycline/pharmacology , Aquaculture , Fresh Water
17.
Antimicrob Agents Chemother ; 67(4): e0169622, 2023 04 18.
Article in English | MEDLINE | ID: mdl-36951566

ABSTRACT

Drug efflux systems have recently been recognized as an important mechanism of multidrug resistance in bacteria. Here, we described the identification and characterization of a novel chromosomally encoded multidrug efflux pump (SA09310) in Staphylococcus aureus. SA09310 is a 43-kDa protein with 12 transmembrane helices. The conserved amino acid sequence motifs of the major facilitator superfamily (MFS) were identified in the protein SA09310, which indicated that SA09310 belonged to the MFS transporters. Expression of the sa09310 gene was induced by different types of antibiotics, including aminoglycoside, tetracycline, macrolides, and chloramphenicol. An sa09310 gene knockout mutant (Δsa09310) was constructed, and its susceptibility to 30 different antibiotics was evaluated. The Δsa09310 mutant exhibited increased sensitivity to tetracycline and doxycycline, with 64-fold- and 8-fold-decreased MICs, respectively. The mechanism of SA09310 mediation of tetracycline resistance was demonstrated by its ability to extrude intracellular tetracycline from within the cells into the environment. The efflux activity of SA09310 was further confirmed by ethidium bromide (EtBr) accumulation and efflux assays. In addition, the efflux activity of SA09310 was observed to be blocked by the known efflux pump inhibitor carbonyl cyanide chlorophenylhydrazone (CCCP), which provided direct evidence that suggested the H+-dependent activity of the SA09310 efflux pump. The conservation of SA09310 homologs in Staphylococcus indicated the universal function of these SA09310-like protein clusters. In conclusion, the function-unknown protein SA09310 has been identified and characterized as a tetracycline efflux pump mediating tetracycline resistance in S. aureus.


Subject(s)
Staphylococcal Infections , Staphylococcus aureus , Humans , Staphylococcus aureus/genetics , Staphylococcus aureus/metabolism , Tetracycline Resistance/genetics , Bacterial Proteins/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Tetracycline/pharmacology , Microbial Sensitivity Tests
18.
Environ Pollut ; 322: 121239, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36758925

ABSTRACT

Antibiotic misuse in livestock is a major threat to human health, as bacteria are quickly developing resistance to them. We performed a comparative analysis of 25 faecal metagenomes from swine, poultry, cattle, and humans to investigate their resistance profiles. Our analysis revealed that all genes conferring resistance to antibiotic classes assessed except tetracyclines were more prevalent in poultry manure than in the remaining species. We detected clinically relevant antibiotic resistance genes, such as mcr-1 which confers resistance to polymyxins. Among them, extended-spectrum ß-lactamase blaCTX-M genes were particularly abundant in all species. Poultry manure was identified as a hotspot for multidrug resistance, which may compromise medical treatment options. Urgent actions in the livestock industry are imperative to hamper the emergence and spread of antibiotic resistance.


Subject(s)
Poultry , Tetracycline Resistance , Swine , Humans , Animals , Cattle , Poultry/microbiology , Tetracycline Resistance/genetics , Manure/microbiology , Metagenomics , Anti-Bacterial Agents/toxicity , Farms
19.
Ann Clin Microbiol Antimicrob ; 22(1): 16, 2023 Feb 20.
Article in English | MEDLINE | ID: mdl-36803640

ABSTRACT

BACKGROUND: Over one million yearly deaths are attributable to Streptococcus pneumoniae and people living with HIV are particularly vulnerable. Emerging penicillin non-susceptible Streptococcus pneumoniae (PNSP) challenges therapy of pneumococcal disease. The aim of this study was to determine the mechanisms of antibiotic resistance among PNSP isolates by next generation sequencing. METHODS: We assessed 26 PNSP isolates obtained from the nasopharynx from 537 healthy human immunodeficiency virus (HIV) infected adults in Dar es Salaam, Tanzania, participating in the randomized clinical trial CoTrimResist (ClinicalTrials.gov identifier: NCT03087890, registered on 23rd March, 2017). Next generation whole genome sequencing on the Illumina platform was used to identify mechanisms of resistance to antibiotics among PNSP. RESULTS: Fifty percent (13/26) of PNSP were resistant to erythromycin, of these 54% (7/13) and 46% (6/13) had MLSB phenotype and M phenotype respectively. All erythromycin resistant PNSP carried macrolide resistance genes; six isolates had mef(A)-msr(D), five isolates had both erm(B) and mef(A)-msr(D) while two isolates carried erm(B) alone. Isolates harboring the erm(B) gene had increased MIC (> 256 µg/mL) towards macrolides, compared to isolates without erm(B) gene (MIC 4-12 µg/mL) p < 0.001. Using the European Committee on Antimicrobial Susceptibility Testing (EUCAST) guidelines, the prevalence of azithromycin resistance was overestimated compared to genetic correlates. Tetracycline resistance was detected in 13/26 (50%) of PNSP and all the 13 isolates harbored the tet(M) gene. All isolates carrying the tet(M) gene and 11/13 isolates with macrolide resistance genes were associated with the mobile genetic element Tn6009 transposon family. Of 26 PNSP isolates, serotype 3 was the most common (6/26), and sequence type ST271 accounted for 15% (4/26). Serotypes 3 and 19 displayed high-level macrolide resistance and frequently carried both macrolide and tetracycline resistance genes. CONCLUSION: The erm(B) and mef(A)-msr(D) were common genes conferring resistance to MLSB in PNSP. Resistance to tetracycline was conferred by the tet(M) gene. Resistance genes were associated with the Tn6009 transposon.


Subject(s)
HIV Infections , Pneumococcal Infections , Adult , Humans , Anti-Bacterial Agents/pharmacology , Streptococcus pneumoniae/genetics , Macrolides/pharmacology , Penicillins , Tetracycline Resistance/genetics , Tanzania , Drug Resistance, Bacterial/genetics , Erythromycin , HIV Infections/drug therapy , Microbial Sensitivity Tests
20.
Lett Appl Microbiol ; 76(2)2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36737425

ABSTRACT

The ecological state of Lake Sevan, the largest drinking water reservoir for the South Caucasus, formed under the influence of climatic and social changes. This study assesses the bacteriological quality of water in the rivers of the Lake Sevan basin and tetracycline-resistant bacteria isolated from fish and people living near the rivers of the Lake Sevan basin in Armenia in autumn 2019 and spring 2020. No differences have been shown for the tetracycline resistance of the investigated E. coli isolated from the human gut and the Masrik, Argichi, and Gavaraget Rivers. Horizontal gel electrophoresis revealed the same plasmid bands in most of the investigated E. coli with the same tetracycline resistance from the different sources of the Argichi River (obtained from people/fish/water sources where the fish were caught). The results also showed that most of the waters carried Edwardsiella spp., Erwinia spp., Morganella spp., and Proteus spp. in addition to E. coli; the coliform index did not exceed the standard level of 5 × 104 CFU mL-1 there. These findings highlight the importance of multidisciplinary studies of bacteria from "interacting" ecosystems, which might serve as a basis for the suggestion of microbial antibiotic resistance as another indicator of water pollution.


Subject(s)
Drinking Water , Tetracycline Resistance , Humans , Animals , Lakes , Escherichia coli , Ecosystem , Gills , Anti-Bacterial Agents/pharmacology , Tetracycline , Rivers/microbiology , Bacteria , Water Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...